Acute or chronic effects of cannabinoids on spontaneous or pharmacologically induced yawning in rats

Ester Miyuki Nakamura-Palacios a,*, Orlando Francisco Amodeo Bueno b, Reinaldo N. Takahashi c, Sérgio Tufik b

a Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, B. Maruípe, 29040-090 Vitória, ES, Brazil
b Department of Psychobiology, Federal University of São Paulo, R. Botucatu, 862-1º andar. Caixa Postal 20399, 04023-062 São Paulo, SP, Brazil
c Department of Pharmacology, Federal University of Santa Catarina, Rua Ferreira Lima, 82, 88015-420, Florianópolis, SC, Brazil

Received 30 March 2002; received in revised form 18 June 2002; accepted 9 August 2002

Abstract

Yawning is a reflex or event that is not fully understood. It is controlled by many neurotransmitters and neuropeptides and can be induced pharmacologically by cholinergic or dopaminergic agonists. Amongst their many actions, cannabinoids acting on cannabinoid (CB 1 or CB 2) receptors can alter cholinergic and/or dopaminergic activity. This study examined the effects of Δ8-tetrahydrocannabinol (Δ8-THC) administered acutely (2.5 mg/kg intraperitoneally [ip], 15 min before test) or chronically (5 mg/kg for 30 days followed by 24 h or 7 days of discontinuation) on yawning induced by pilocarpine, a cholinergic agonist (0, 1, 2, 4 or 8 mg/kg ip), or apomorphine, a dopaminergic agonist (0, 20, 40 or 80 µg/kg subcutaneously [sc]). Acute effects of different doses of Δ9-tetrahydrocannabinol (Δ9-THC: 0, 0.5, 1.25 or 2.5 mg/kg ip) on yawning induced by pilocarpine (2 mg/kg ip) or apomorphine (40 µg/kg sc) were also investigated. Both pilocarpine and apomorphine produced yawning in a dose-related manner. Acute administration of Δ8-THC and Δ9-THC significantly reduced yawning induced by both pilocarpine and apomorphine. Chronic administration of Δ8-THC did not change yawning induced by either agonist 24 h or 7 days after discontinuation of Δ8-THC. However, a high frequency of spontaneous yawning was observed 7 days after Δ8-THC discontinuation. These results suggest that cannabinoid agonists inhibited yawning induced by cholinergic or dopaminergic agonists. In addition, the increased frequency of spontaneous yawning following cessation of chronic administration of a cannabinoid agonist may be of importance as a withdrawal sign for these drugs.

© 2002 Elsevier Science Inc. All rights reserved.

Keywords: Cannabinoids; Δ8-THC; Δ9-THC; Yawning; Pilocarpine; Apomorphine

1. Introduction

In the past decade, the results of many studies have greatly increased the understanding of the physiology and pharmacology of cannabinoids in the central and peripheral nervous systems (see Nakamura-Palacios et al., 1999, for a review). For example, cannabinoid CB1 and CB2 receptors (Matsuda et al., 1990; Munro et al., 1993) and a subtype CB1A (Shire et al., 1995), have been characterized (Devane et al., 1988), cloned (Matsuda et al., 1990; Marx, 1990) and the second messenger systems identified (Childers et al., 1992; Martin et al., 1994; Childers and Deadwyler, 1996). Anandamide, 2-arachidonyl glycerol, homo-γ-linolenylethanolamide, 7,10,13,16-docosatetraenyl-ethanolamide, mead ethanolamide and palmitoylethanolamide have been proposed as endogenous ligands for cannabinoid receptors (Devane et al., 1992; Stella et al., 1997; Pertwee, 1997). The availability of cannabinoid antagonists selective for the CB1 receptor, SR141716A, and CB2 receptor, SR144528 (Rinaldi-Carmona et al., 1994; Calignano et al., 1997), has greatly facilitated studies on the physiological functions of cannabinoid systems. Additionally other antagonists such as WIN 56,098, 6-bromopravodoline (WIN 54,461), 6-iodoprawodoline (AM630), LY320135 (Hosohata et al., 1997; Pertwee, 1997; Felder et al., 1998), have also been synthesized and characterized.

Cannabinoids affect the actions and release of many neurotransmitters, including acetylcholine (ACh) and dopamine (DA) (Pertwee, 1990). Recent studies have demon-
strated that cannabinoids act at presynaptic CB1 receptors to inhibit ACh release in ileal myenteric plexus-longitudinal smooth muscle preparations (López-Redondo et al., 1997; Izzo et al., 1998; Coutts and Pertwee, 1998; see Izzo et al., 2001, for a review), the hippocampus and the medial–prefrontal cortex (Carta et al., 1998; Gifford and Ashby, 1996; Gessa et al., 1998a). SR 141716A antagonizes the inhibition of hippocampal ACh release produced by cannabinoid agonists, suggesting that the effects of cannabinoids on learning and memory depend on a CB1 receptor-mediated inhibition of ACh release in the hippocampus (Gessa et al., 1997). Also, the combination of SR 141716A or Δ9-tetrahydrocannabinol (Δ9-THC) with scopolamine produced larger disruptive effects on a repeated-acquisition procedure in squirrel monkeys than those observed when either Δ9-THC or scopolamine was administered alone, indicating that either a CB1-receptor agonist or antagonist can alter the disruptive effects of scopolamine on learning in squirrel monkeys (Nakamura-Palacios et al., 2000).

In contrast to the inhibition of ACh release, the stimulation of CB1 receptors produces an activation of meso–prefrontal or mesolimbic dopaminergic transmission (French, 1997; Diana et al., 1998; Gessa et al., 1998b; Mascia et al., 1999). Because these dopaminergic circuits are involved in the reinforcing effects of most drugs of abuse, the enhanced dopaminergic activity might underlie the reinforcing and abuse properties of marijuana (Diana et al., 1998; Ameri, 1999). Additionally, the disruptive effects of cannabinoids on cognitive processes might be related to the activation of dopaminergic transmission in the prefrontal cortex (Diana et al., 1998).

Adversely, the synthetic cannabinoid agonist, HU 210, antagonized motor hyperactivity and stereotypical behavior elicited by cocaine and a DA receptor agonist, CQP 201–403 (Ferrari et al., 1999). HU 210 also antagonized penile erection and stretching–yawning elicited by dopaminergic D2/D3 agonists, B-HT 920 and 7-OH-DPAT, in a manner similar to that produced by a dopaminergic D2 antagonist, (−) eticlopride (Ottani et al., 2002). Additionally, an intracerebroventricular administration of an anandamide transport inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404), which causes anandamide to accumulate in the central nervous system, produced a mild and slow-developing hypokinesia and reduced the stimulation of motor behaviors elicited by the selective D2 family receptor agonist quinpirole (Beltramo et al., 2000). Therefore, it seems that cannabinoid agonists can both increase and decrease dopaminergic activity.

Yawning is a reflex or stereotyped event exhibited by all mammals and vertebrates (Chouard and Bigot Massoni, 1990; Argiolas and Melis, 1998). It seems to be a brain stem arousal reflex with both peripheral and central loops subserving reversal of brain hypoxia or hypoxemia (Alöe, 1994), probably related to an effort to keep vigilance (Blin et al., 1991). Its mechanisms and functional role are not entirely known (Chouard and Bigot Massoni, 1990; Alöe, 1994; Argiolas and Melis, 1998). It seems to be centrally linked with the dopaminergic system in a D1–D2 cooperation (Blin et al., 1991) and the cholinergic system as the effector pathway (Yamada and Furukawa, 1980; Tufik et al., 1987; Blin et al., 1991) for the dopaminergic–cholinergic linked neural mechanism (Ushijima et al., 1988; Kimura et al., 1996).

However, many other neurotransmitters and neuromodulators, such as excitatory amino acids, serotonin, gamma-aminobutyric acid, noradrenaline, nitric oxide, adrenocorticotropic hormone related peptides, oxytocin and opioid peptides, are also involved in the central control of yawning (Blin et al., 1991; Alöe, 1994; Argiolas and Melis, 1998).

The studies reviewed above demonstrate that cannabinoids can alter transmission mediated by both dopaminergic and cholinergic pathways, both of which are involved in the yawning response. Because cannabinoids are known to alter responses mediated by these neurotransmitter systems, the current study was carried out to examine the effects of acute and chronic treatments with cannabinoid agonists on the spontaneous yawning response as well as that produced by a cholinergic and dopaminergic agonists in rats.

2. Method

2.1. Subjects

Male Wistar rats (Psychobiology Department, UNIFESP, or Pharmacology Department, UFSC) 2.5–3 months old weighing between 250 and 300 g were used. The subjects were maintained on a 12-h light–dark cycle (lights on at 7:00 a.m. to 7:00 p.m.) in a temperature-controlled animal room. They were housed in wire cages in groups of three subjects. The care and use of all subjects in this study followed the guidelines for experimental animal utilization that are in conformity with international principles for research involving animals.

2.2. Drugs

Δ8-THC and Δ9-THC were provided by the National Institute on Drug Abuse (DHHS, NIDA, NC) and the National Institute of Mental Health (NIMH, MD) and were kept refrigerated in darkness until just prior to use. Suspensions for injection were prepared by the method of Carlini and Kramer (1965). The alcohol in which the drug was dissolved was evaporated and the residue resuspended in 0.9% NaCl solution containing one drop of Tween-80 per 10 ml. The fine colloidal suspension that resulted had 2.5 mg of the ΔΔ-THC residue/ml or 0.5, 1.25 or 2.5 mg of Δ9-THC residue/ml for acute administrations and 5 mg/ml of Δ9-THC for chronic administration. Pilocarpine HCl and amphetamine HCl (Sigma Chemical) were dissolved in distilled water to give concentrations of 1, 2, 4 and 8 mg/ml for pilocarpine HCl and 20, 40 and 80 μg/ml for amphetamine.
HCl (Sigma Chemical). All drugs were administered in a volume of 0.1 ml/100 g body weight. Δ⁸-THC, Δ⁹-THC, saline (controls) and pilocarpine were administered by the intraperitoneal (ip) route and apomorphine subcutaneously (sc).

2.3. Procedure

On the day of the experiment the animals were brought to the laboratory and placed in individual wire cages. During the 30-min period immediately following the administration of pilocarpine, apomorphine or saline, the number of yawns was counted as the total number of deep inspirations made through a wide-open mouth associated with and without stretching. All measurements were taken in the afternoon, beginning at 1:30 p.m.

For acute treatments, Δ⁸-THC (2.5 mg/kg) or saline was administered 15 min before saline or pilocarpine (0, 1, 2, 4 or 8 mg/kg) or apomorphine (0, 20, 40 or 80 μg/kg). Δ⁹-THC (0.5, 1.25 or 2.5 mg/kg) or saline was administered 15 min before saline or pilocarpine (2 mg/kg) or apomorphine (40 μg/kg).

For chronic treatment, Δ⁸-THC (5 mg/kg) or saline was administered once a day in the afternoon for 30 days. Twenty-four hours and 7 days later, the effects of saline, pilocarpine (1 or 2 mg/kg) or apomorphine (20 or 40 μg/kg) were determined. This procedure was conducted to determine if the chronic treatment with a cannabinoid agonist resulted in changes in the sensitivity to either pilocarpine or apomorphine in a manner similar to that produced by a chronic treatment with a DA antagonist seen at 7 days after cessation of treatment (Gianutsos et al., 1974; Gianutsos and Lal, 1976).

2.4. Data analyses

Data are presented as mean ± S.E.M. number of yawns recorded during 30 min after drug or saline administration. Two-way analysis of variance for independent measures followed by Tukey’s test were used in the comparison of data obtained among different doses of pilocarpine or apomorphine following saline or Δ⁸-THC, and also for data obtained after chronic treatment with Δ⁸-THC or saline. One-way analyses of variance for independent measures followed by Tukey’s test were used to compare the effects of different doses of Δ⁸-THC combined with pilocarpine or apomorphine. In all analyses, an alpha level of two-tailed $P < .05$ was employed.

3. Results

Effects of pilocarpine combined with saline or Δ⁸-THC are shown in the upper panel of the Fig. 1. Two-way analysis of variance showed statistically significant differences between treatments with saline or Δ⁸-THC

![Fig. 1. Effects of acute administration of Δ⁸-THC (2.5 mg/kg ip) on yawning induced by different doses of pilocarpine (upper panel) or apomorphine (lower panel). The bars and error symbols represent the mean (±S.E.M.) number of yawns seen in the 30-min observation period. $* P < .05$ compared to the same dose of pilocarpine preceded by saline; $** P < .01$ compared to the same dose of pilocarpine or apomorphine preceded by saline; # $P < .01$ compared to the control saline–saline (0).](image-url)
pared to the control (saline–saline). Pretreatment with of Δ⁹-THC (2.5 mg/kg) completely abolished yawning induced by all doses of apomorphine.

Fig. 2 shows that Δ⁹-THC dose-dependently reduced yawning induced by pilocarpine (2 mg/kg ip) (left panel) or apomorphine (40 μg/kg sc) (right panel). The bars and error symbols represent the mean (± S.E.M.) number of yawns seen in the 30-min observation period. * P < .05 compared to pilocarpine preceded by saline (0); ** P < .01 compared to pilocarpine or apomorphine preceded by saline (0); # P < .01 compared to the control saline–saline (S-S).

Table 1

<table>
<thead>
<tr>
<th>Drug combination</th>
<th>Yawning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline–saline</td>
<td>0 ± 0 (8)</td>
</tr>
<tr>
<td>Δ⁹-THC</td>
<td></td>
</tr>
<tr>
<td>0.5 mg/kg–saline</td>
<td>0.5 ± 0.34 (6)</td>
</tr>
<tr>
<td>1.25 mg/kg–saline</td>
<td>0 ± 0 (8)</td>
</tr>
<tr>
<td>2.5 mg/kg–saline</td>
<td>0 ± 0 (4)</td>
</tr>
</tbody>
</table>

Data are presented as mean ± S.E.M. (number of subjects).

gencies among the effects of different doses of Δ⁹-THC preceding pilocarpine [F(43,4) = 9.32, P < .0001] or apomorphine [F(43,4) = 16.06, P < .0001]. Doses of 1.25 or 2.5 mg/kg of Δ⁹-THC combined with pilocarpine produced significantly less yawning (P < .05 and 0.01, respectively) compared to the effect of pilocarpine preceded by saline. All doses of Δ⁹-THC (0.5, 1.25 and 2.5 mg/kg) completely abolished yawning induced by apomorphine. There were no statistically differences in the comparison among different doses of Δ⁹-THC followed by saline compared to control (saline–saline) (Table 1).

Chronic administration of Δ⁹-THC for 30 days did not change yawning induced by either of the doses of pilocarpine (1 or 2 mg/kg) or apomorphine (20 or 40 μg/kg), 24 h or 7 days after the last drug administration (Table 2). However, it is of interest to note that at 7 days after cessation of Δ⁹-THC treatment, the rate of spontaneous yawning (yawning observed after saline administration) was significantly greater (P < .01, Tukey’s test) than that seen in subjects treated chronically with saline.

4. Discussion

The dose-dependent yawning induced by cholinergic and dopaminergic agonists was consistent with several studies (Yamada and Furukawa, 1980; Ushijima et al., 1984a; Tufik et al., 1987).

One could argue that what we are calling as yawning might actually be what is described as conditional gaping in rats as a manifestation of the vomiting response, relating our results to an antiemetic effect of cannabinoids. However,
gaping behavior is characterized by a rapid opening and closing of the mouth usually accompanied by chin rubbing, reflecting an aversive response (Sederholm and Södersten, 2002) or a rejection taste reactivity response (Parker and Brosseau, 1990), in contrast to yawning, a slower and wide opening of the mouth, sometimes accompanied by stretching behavior, a pattern of response observed in our study. Additionally, the experimental observation of a conditional rejection reactions in rats usually needs a flavor, which will induce this response through oral infusion, to be previously paired to an emetic drug such as lithium chloride (Pelchat et al., 1982; Parker et al., 2002), a procedure that was not used in our study. Finally, there are very few reports in the literature referring to cholinergic agonists inducing gaping (Rupniak et al., 1983; Salamone et al., 1986; Collins et al., 1993), or apomorphine inducing gaping and this one in large doses, far beyond the dose range employed in our study (Parker and Brosseau, 1990).

According to Yamada and Furukawa (1980) and Ushijima et al. (1984a), yawning induced by pilocarpine is produced centrally, as shown by the observation that yawning induced directly by a cholinergic agonist such as pilocarpine or indirectly by a cholinesterase inhibitor such as phystostigmine can be blocked by muscarinic antagonists that penetrate the central nervous system (e.g., scopolamine) but not by those acting only peripherally (e.g., methylscopolamine).

Low doses of apomorphine act preferentially at D2 presynaptic receptors to cause a reduction in DA release. Considering the inhibitory modulation of DA on ACh release, the reduced release of DA could result in a greater release of ACh, and thereby increase yawning (Yamada and Furukawa, 1980; Ushijima et al., 1984a; Tufik et al., 1987). Centrally acting muscarinic antagonists abolish yawning induced by dopaminergic and cholinergic agonists, whereas dopaminergic antagonists only abolish apomorphine-induced yawning (Yamada and Furukawa, 1980; Ushijima et al., 1984a; Tufik et al., 1987). These observations strongly suggest that the yawning induced by low doses of a dopaminergic agonist is due to an increase in central cholinergic transmission.

In the present study, acutely administered Δ8-THC or Δ9-THC decreased yawning induced by pilocarpine in a dose-dependent manner and completely blocked yawning induced by apomorphine. It is likely that these actions involve a cannabinoid modulation of central dopaminergic and/or cholinergic systems, a dopaminergic–cholinergic linked neural mechanism or actions of the cannabinoids at another site distal to that of pilocarpine.

The inhibitory effects of these cannabinoids on pilocarpine-induced yawning cannot be readily explained by the known ability of cannabinoid agonists to inhibit ACh release (López-Redondo et al., 1997; Coutts and Pertwee, 1997; Gifford et al., 1997) or a competitive interaction between the cannabinoid and pilocarpine for occupancy of muscarinic receptors. The cannabinoid agonists produced a dose-dependent inhibition of the actions of pilocarpine that could not be overcome by increasing doses of pilocarpine. This form of antagonism is analogous to that seen with the inhibition of indirectly acting agonists (Black et al., 1980; Barker and Ebersole, 1982) and suggests that the cannabinoids are acting at a site distal to the actions of pilocarpine.

Yawning induced by low doses of apomorphine was much more sensitive to antagonism by both Δ8-THC and Δ9-THC than that produced by pilocarpine. Similar to what was observed for pilocarpine, increasing doses of apomorphine did not overcome the inhibition produced by Δ9-THC. Apomorphine at 40 μg/kg and pilocarpine at 2 mg/kg produced similar increases in yawning. The lowest dose of Δ9-THC, 0.5 mg/kg, completely abolished the response to apomorphine. In contrast, this dose only produced about a 30% decrease in the yawning produced by pilocarpine. The inhibitory effects of the cannabinoid agonists on the actions of apomorphine appear to be due to an antagonism rather than an enhancement of dopaminergic transmission.

Behavioral effects of apomorphine are biphasic; low doses induce yawning and sedation, probably by presynaptic D2 autoreceptors activation, whereas higher doses induce stereotypy and hyperactivity, probably by postsynaptic D1 activation (Yamada and Furukawa, 1980). These behaviors are mutually exclusive (Tufik et al., 1987) in that yawning decreases with increasing doses of apomorphine.

Several studies have shown that cannabinoid agonists can either increase dopaminergic activity or produce a dopaminergic antagonistic-like effect. The antagonistic-like actions of cannabinoid agonists might best explain our results since the apomorphine-induced yawning was the most affected by cannabinoid agonists and no sign of stereotypy or hyperactivity was observed in animals treated with the combination of cannabinoids with apomorphine.

This antagonistic-like action of cannabinoid agonists may involve D2 dopamine receptor mediation. Beltramino et al. (2000) recently showed that both, anandamide transport inhibitor AM404 and anandamide by itself counteract two characteristic responses mediated by activation of D2 family receptors, that is, yawning induced by apomorphine in a dose equivalent to the highest one employed in our study (80 μg/kg sc) and quinpirole-induced stimulation of motor behaviors. Because the stimulation of motor behavior elicited by systemic administration of the D2-like agonist quinpirole was increased by SR 141716A, Giuffrida et al. (1999) suggested that the endocannabinoid system may modulate D2 dopamine-induced activation of psychomotor activity acting as an inhibitory feedback mechanism to this behavior.

Neurotransmitter or neuromodulator systems other than cholinergic or dopaminergic also have to be considered. According to Argiolas and Melis (1998), activation of the paraventricular nucleus of the hypothalamus by DA, excitatory amino acids and oxytocin facilitates yawning by releasing oxytocin at extrahypothalamic areas such as the hippocampus, the pons and/or the medulla oblongata that...
play a key role in the expression of this behavioral event. The yawning induced by these neurotransmitters or neuro-peptides was only antagonized by opioid peptides (Argiolas and Melis, 1998).

There were no changes in the ability of pilocarpine or apomorphine to induce yawning at 24 h or 7 days after cessation of the chronic administration of Δ⁹-THC. Previous studies on yawning have shown that rodents treated chronically with haloperidol, a dopaminergic antagonist, exhibited a central hyposensitivity (Dustan and Jackson, 1977) to apomorphine and physostigmine, both of which act via the release of ACh, but not with pilocarpine, a directly acting agonist (Ushijima et al., 1984b). On the other hand, after chronic treatment with muscarinic antagonists such as atropine or scopolamine there was a supersensitivity to physostigmine and pilocarpine (Takeyasu et al., 1979; Ushijima et al., 1984b), but not to apomorphine (Ushijima et al., 1984b).

Our results suggest that, unlike their effects on other behaviors, chronic treatment with a cannabinoid agonist does not alter the sensitivity of systems modulating yawning.

Recent studies have shown that the repeated administration of cannabinoid agonists might or might not change the acute effects of some drugs. For example, Ferrari et al. (1999) found that a short-term treatment (7 days) with a cannabinoid agonist, HU 210, did not modify cocaine-induced effects, although it increased locomotor activity and stimulated escape attempts produced by a D₁/D₂ agonist, CQP 201–403. A chronic administration of Δ⁸-THC (3 weeks) did not change the effects of amphetamine or heroin in low-responder rats, but it significantly increased the locomotor effects of these drugs in high-responder rats (Lamarque et al., 2001).

Nevertheless, a salient finding of the present study was that animals treated with Δ⁸-THC for 30 days showed higher spontaneous yawning 7 days after drug discontinuation compared to animals treated with saline. The latency for this effect of chronic cannabinoid treatment is much less than that observed by Lamarque et al. (2001). In their study, the increased locomotor responses to heroin only occurred in high-responder rats with a latency of 41 days after heroin treatment. This sign might provide a good behavioral instrument for carrying out studies on cannabinoid withdrawal and/or dependence.

Acknowledgements

We thank Leticia Maria de Souza Leite Lobo, Deborah Suchecki, Roberta de Medeiros, Guilhermino Pereira Nunes Junior, Vânia Sartori, George Ernesto da Silva for their help. We also thank Mr. Severino Ferreira de Lima and Mr. Tomé dos Anjos Pimentel for their helpful technical assistance. We are also grateful to Louis Allen Barker, PhD, from the Department of Pharmacology and Experimental Therapeutics of Louisiana State University Health Science Center (New Orleans, LA) for his critical comments and suggestions on this manuscript. The cannabinoid used in this study were provided through the courtesy of the National Institute on Drug Abuse (NIDA) and the National Institute of Mental Health (NIMH). This work was supported by AFIP. Funding sources: FAPESP, CNPq.

References

Barker LA, Ebersole BJ. Histamine H₂-receptors on guinea-pig ileum myenteric plexus neurons mediate the release of contractile agents. J Pharmacol Exp Ther 1982;221:69–75.
Calignano A, La Ran G, Beltramo M, Makriyannis A, Piomelli D. Poten-

Gifford AN, Ashby Jr CR. Electrically evoked acetylcholine release from hippocampal slices is inhibited by the cannabinoid receptor agonist, WIN 55212-2, and is potentiated by the cannabinoid antagonist, SR 141716A. J Pharmacol Exp Ther 1996;277(3):1431–6.

Parker LA, Brosseau L. Aromonopine-induced flavor drug associations: a...
dose–response analysis by the taste reactivity test and the conditioned
Parker LA, Mechoulam R, Schlievert C. Cannabidiol, a non-psychoactive
component of cannabis and its synthetic dimethylheptyl homolog
suppress nausea in an experimental model with rats. Neuroreport 2002;
13(5):567–70.
Pelchat ML, Grill HJ, Rozin P, Jacobs J. Quality of acquired responses to
tastes by Rattus norvegicus depends on type of associated discomfort. J
Comp Psychol 1982;97(2):140–53.
Pertwee RG. The central neuropharmacology of psychotropic cannabinoids.
In: Balfour DJK, editor. Psychotropic drugs of abuse. New York: Per-
Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Phar-
Rinaldi-Carmona M, Barth F, Héaulme M, Shire D, Calandra B, Congy C,
et al. SR 141716A, a potent and selective antagonist of the brain can-
Rupniak NM, Jenner P, Marsden CD. Cholinergic manipulation of perioral
behaviour induced by chronic neuroleptic administration to rats. Psy-
Salamone JD, Lalies MD, Channell SL, Iversen SD. Behavioral and
pharmacological characterization of the mouth movements induced
by muscarinic agonists in the rat. Psychopharmacology (Berl) 1986;
Sederholm F, Södersten P. Aversive behavior during intraoral intake in male
Shire D, Carillon C, Kaghad M, Calandra B, Rinaldi-Carmona M, LeFur G,
et al. An amino-terminal variant of the central cannabinoid receptor
Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that
Changes in brain muscarinic acetylcholine receptors and behavioral
responses to atropine and apomorphine in chronic atropine-treated rats.
Tufik S, Troncone LRP, Braz S, Silva-Filho A, Neumann BG. Does REM
sleep deprivation induce subsensitivity of presynaptic dopamine or
postsynaptic acetylcholine receptors in the rat brain? Eur J Pharmacol
Ushijima I, Yamada K, Inoue T, Tokinaga T, Furukawa T. Muscarinic and
nicotinic effects on yawning and tongue protruding in the rat. Pharma-
Ushijima I, Noda Y, Mizuki Y, Yamada M. Modification of apomorphine-
physostigmine- and pilocarpine-induced yawning after long-term treat-
ment with neuroleptic or cholinergic agents. Arch Int Pharmacodyn
Ushijima I, Mizuki Y, Yamada M. Multifocal sites of action involved in
dopaminergic–cholinergic neuronal interactions in yawning. Psycho-
Yamada K, Furukawa T. Direct evidence for involvement of dopaminergic
inhibition and cholinergic activation in yawning. Psychopharmacology